1 ●次の関数を微分せよ。

 $(1) \quad y = \log x$

 $(2) \quad y = \log(2x + 3)$

 $(3) \quad y = x \log_5(x+1)$

 $(3) \quad y = \log(x^2 - 3x)$

 $(4) \quad y = (\log x)^2$

[4] **例** 次の関数を微分せよ。

 $(1) \quad y = e^{-4x}$ $y' = e^{-4x} \cdot (-4x)' = -4e^{-4x}$ $(2) \quad y = x^2 3^x$ $y' = (x^2)'3^x + x^2(3^x)' = 2x \cdot 3^x + x^2 \cdot 3^x \log 3$ $= x \cdot 3^{x}(2 + x \log 3)$

 $(5) \quad y = x + \log x$

(6) $y = x \log x$

●次の関数を微分せよ。

(1) $y = e^{6x}$

 $(2) \quad y = 5^x$

2 ●次の関数を微分せよ。

 $(1) \quad y = e^{x}$

(2) $y = e^{2x+3}$

 $(3) \quad y = x^2 e^x$

(4) $y = \frac{1}{e^x + e^{-x}}$

(3) $y = e^{x^2+1}$

 $(4) \quad y = xe^{2x}$

●次の関数を微分せよ。

(1) $y = e^{-x^2+1}$

(2) $y = 3^{-2x^2}$

(5) $y = (e^x)^2$

 $(6) \quad y = e^x \cos x$

(3) $y = (3x+1)2^x$

 $(4) \quad y = \frac{e^x}{e^x - 1}$

3 例 次の関数を微分せよ。

 $y' = \frac{1}{5x-1} \cdot (5x-1)' = \frac{5}{5x-1}$

 $(2) \quad y = \log_2 |3x|$

 $y' = \frac{1}{3x\log 2} \cdot (3x)' = \frac{3}{3x\log 2} = \frac{1}{x\log 2}$

●次の関数を微分せよ。

 $(1) \quad y = \log(3x + 1)$

 $(3) \quad y = x^3 \log x$

(2) $y = \log_2(3x - 1)$

[5] 例 曲線 $y = \frac{1}{x^2}$ 上の点 (1, 1) における接線の方程式を求めよ。

 $f(x) = \frac{1}{x^2}$ とすると $f'(x) = -\frac{2}{x^3}$

よって f'(1) = -2

したがって、求める接線の方程式は y-1=-2(x-1)

tab5 y = -2x + 3

●次の曲線上の点 A における接線の方程式を求めよ。

(1) $y = \sqrt{x+2}$, A (7, 3) (2) $y = 2^x$, A (0, 1)

●次の関数を微分せよ。

(1) $y = \log(4 - x^2)$

(2) $y = \log_4(3x^2 + x)$

[6] 例 曲線 $y=\sqrt{x-1}$ について、次のような接線の方程式を求めよ。

- (1) 傾きが $\frac{1}{4}$
- (2) 原点を通る

 $y=\sqrt{x-1}$ を微分すると $y'=\frac{1}{2\sqrt{x-1}}$

ここで、接点の座標を $(a, \sqrt{a-1})$ とすると、接線の方程式は

$$y - \sqrt{a-1} = \frac{1}{2\sqrt{a-1}}(x-a) \quad \cdots \quad \bigcirc$$

(1) 接線 ① の傾きが $\frac{1}{4}$ であるから $\frac{1}{2\sqrt{a-1}} = \frac{1}{4}$

これを解くと a=5

- ① に代入して整理すると $y=\frac{1}{4}x+\frac{3}{4}$
- (2) 接線① が原点 (0, 0) を通るから $0-\sqrt{a-1} = \frac{1}{2\sqrt{a-1}}(0-a)$ これを解くと a=2
 - ① に代入して整理すると $y=\frac{1}{2}x$
- ●曲線 $y=e^{2x+1}$ について、傾きが 2 である接線の方程式を求めよ。

●曲線 $y=2\log x$ について、原点を通る接線の方程式を求めよ。

[7] 例 関数 $f(x) = x + \frac{3}{x}$ の極値を求めよ。

f(x) の定義域は $x \neq 0$ である。

$$f'(x) = 1 - \frac{3}{x^2} = \frac{x^2 - 3}{x^2} = \frac{(x + \sqrt{3})(x - \sqrt{3})}{x^2}$$

f'(x) = 0 とすると $x = -\sqrt{3}$, $\sqrt{3}$

f(x) の増減表は次のようになる。

х		$-\sqrt{3}$		0		$\sqrt{3}$	
f'(x)	+	0	_		_	0	+
f(x)	1	極大 -2√3	A		A	極小 2√3	1

よって、f(x) は

 $x=-\sqrt{3}$ で極大値 $-2\sqrt{3}$, $x=\sqrt{3}$ で極小値 $2\sqrt{3}$ をとる。

- ●次の関数の極値を求めよ。
- $(1) \quad f(x) = \frac{\log x}{x^2}$

(2) $f(x) = x^3 e^{-3x}$