$\boxed{1}$ \bullet 次の(1) \sim (4) について、 $\sin\theta$ 、 $\cos\theta$ 、 $\tan\theta$ の値を求めよ。

また, (5) \sim (8) について, x を θ を用いて表せ。

(5)

2 ●次の値を求めよ。

(1)
$$\sin \frac{2}{3}\pi$$

(2)
$$\sin\left(-\frac{3}{2}\pi\right)$$

(3) $\cos \frac{\pi}{6}$

(4) cos 0

(5) $\tan \frac{4}{3}\pi$

(6) $\tan\left(-\frac{5}{4}\pi\right)$

③ 例 0° <A< 90° , $\cos A = \frac{3}{4}$ のとき, $\sin A$, $\tan A$ の値を求めます。

$$\cos A = \frac{3}{4}$$
 を $\sin^2 A + \cos^2 A = 1$ に代入すると $\sin^2 A + \left(\frac{3}{4}\right)^2 = 1$

$$\sin A > 0$$
 であるから $\sin A = \sqrt{\frac{7}{16}} = \frac{\sqrt{7}}{4}$

$$\sharp \hbar \qquad \tan A = \frac{\sin A}{\cos A} = \sin A \div \cos A$$

$$=\frac{\sqrt{7}}{4} \div \frac{3}{4} = \frac{\sqrt{7}}{4} \times \frac{4}{3} = \frac{\sqrt{7}}{3}$$

- ●次の値を求めなさい。
- (1) 0° < A < 90° , $\sin A = \frac{1}{3}$ のとき, $\cos A$ と $\tan A$ の値

(2) 0° < A < 90° , $\cos A = \frac{1}{4}$ のとき, $\sin A$ と $\tan A$ の値

4 例 θ の動径が第4象限にあり、 $\cos \theta = \frac{4}{5}$ のとき、 $\sin \theta$ と $\tan \theta$ の値を求めなさい。

> 解答 $\cos \theta = \frac{4}{5}$ を $\sin^2 \theta + \cos^2 \theta = 1$ に代入すると $\sin^2\theta + \left(\frac{4}{5}\right)^2 = 1$

$$\sin^2\theta + \left(\frac{4}{5}\right)^2 = 1$$
 よって
$$\sin^2\theta = 1 - \left(\frac{4}{5}\right)^2 = 1 - \frac{16}{25} = \frac{9}{25}$$
 θ の動径が第 4 象限にあるから
$$\sin\theta < 0$$
 よって
$$\sin\theta = -\sqrt{\frac{9}{25}} = -\frac{3}{5}$$

$$\sqrt{25} \qquad 5$$

$$\tan \theta = \frac{\sin \theta}{\cos \theta} = \sin \theta \div \cos \theta$$

$$=\left(-\frac{3}{5}\right)\div\frac{4}{5}=-\frac{3}{4}$$

ullet (1) θ の動径が第4象限にあり, $\cos \theta = rac{2}{3}$ のとき, $\sin \theta$ と $\tan \theta$ の値を求めなさい。

- (2) θ の動径が第3象限にあり、 $\sin\theta=-rac{3}{5}$ のとき、 $\cos\theta$ と $\tan\theta$ の値を求めなさい。
 - $\boxed{7}$ ullet lpha, eta の動径はともに第2象限にあるものとする。 $\sin \alpha = \frac{4}{5}$, $\cos \beta = -\frac{2}{5}$ のとき, 次の値を求めなさい。 (1) $\cos \alpha$ (2) $\sin \beta$

(4) $\cos(\alpha - \beta)$

- $\boxed{5}$ \bullet $\tan \theta = -3$, $\cos \theta > 0$ とする。次の問いに答えなさい。
 - (1) θ の動径は第何象限にありますか。
 - (2) $an heta=rac{\sin heta}{\cos heta}$ を利用して, $\sin heta$ を $\cos heta$ で表しなさい。
 - (3) $\sin^2\theta + \cos^2\theta = 1$ を利用して, $\cos\theta$ の値を求めなさい。
- $oldsymbol{8}$ $oldsymbol{0} \leq heta < 2\pi$ のとき,次の方程式,不等式を解け。 $(1) \quad \cos 2\theta + 3\cos \theta - 1 = 0$

(3) $\sin(\alpha + \beta)$

- (4) $\sin \theta$ の値を求めなさい。
- $\boxed{6}$ 例 α の動径が第4象限にあり、 $\cos \alpha = \frac{3}{5}$ のとき、 $\sin 2\alpha$ の値を求めなさい。

$$\sin^2 \alpha = 1 - \cos^2 \alpha = 1 - \left(\frac{3}{5}\right)^2 = \frac{16}{25}$$

 α の動径が第4象限にあるから $\sin \alpha < 0$

$$\sin \alpha = -\sqrt{\frac{16}{25}} = -\frac{4}{5}$$

したがって $\sin 2\alpha = 2\sin \alpha\cos \alpha = 2 \times \left(-\frac{4}{5}\right) \times \frac{3}{5} = -\frac{24}{25}$

- \bullet α の動径が第 2 象限にあり、 $\sin \alpha = \frac{4}{5}$ のとき、次の値を求めなさい。
- (1) $\sin 2\alpha$

(2) cos 2α

(2) $\sin 2\theta - \sin \theta = 0$

(3) $\cos 2\theta - \sqrt{3} \sin \theta + 2 = 0$

- (1) $\sin 2\alpha$
- ullet α の動径が第 3 象限にあり, $\cos \alpha = -\frac{2}{\sqrt{5}}$ のとき,次の値を求めなさい。 (2) cos 2α